SIRIUS WAVE: The Binary Multi-sensory Interactive Light Product

Please welcome SIRIUS WAVE, the latest in the SENSE-I-ca multi-sensory interactive products.

Sirius Wave:The Binary Multi-sensory Interactive Light Product

Following on the heels of AURORA WAVE, and CORONA WAVE, SIRIUS WAVE is a touch-activated light machine that creates a wide range of beautifully colourful animated and soothing light patterns that appear to emanate from its core.

So why the name SIRIUS WAVE?

Well SIRIUS, which means “glowing” or “scorching” in ancient Egyptian, is the brightest star system in the night sky and while it appears as a single star, it is in fact a binary star system, consisting of a white star, Sirius A, and a faint white dwarf, Sirius B.  The WAVE part of its name comes from the non-contact “touch” system used to control its animations.

Apropos, don’t you think?

Sirius Wave:showing a wave mode that sweeps colour patterns across the displays under the control of the user

Like its siblings, SIRIUS WAVE encourages the user to touch and control the brightly glowing animated light patterns. However, SIRIUS WAVE is unique in that it offers completely independent control of the right and left sides, allowing users to create even more vibrant and vivid colour patterns with both hands. The two independent controls can be simply exercised by a single user or, for instance, in combination with a caregiver to facilitate hand-eye coordination and control exercises.

Sirius Wave:showing one of the dot pattern modes where the colour palette of each side are independently controlled by the user

Made out of soft white plastic that warms to the touch, the light patterns pulse, beat and swirl slowly around the unit to creating enthralling and relaxing aurora light shows. A total of 10 different patterns can be selected and controlled by the user.

The SIRIUS WAVE is 6″ x 11″, fits comfortably in a lap, or table top, and consists of 184 brightly coloured LED lights arranged as two sets of concentric rings to create a visually stimulating display.

Continue reading

A new 48V 500W Brushless Spindle: CNC Porn

So, finally I added my new 48V 500W brushless spindle to my CNC machine… And what a difference!

New 500W 48V Spindle: now mounted to the CNC machine

So, what’s the news?

Well, The 24V 350W brushed spindle that came with my CNC machine has been well used but recently announced that it needed upgrading. Bearing noise and increased run-out suggested that the spindle was on its last legs. So, for about $170 CDN I bought a 500W 48V DC brushless 3-phase spindle from eBay, and for another $85 CDN, a separate 48V 1000W power supply,

While I had tested them upon arrival, I took the time today to install them properly onto the CNC machine.

The spindle came with a heavy-duty aluminium mounting bracket and a motor speed controller. The bracket had to be drilled out to match the existing Z-axis mounting bolts and the 3-phase cables chased through the flexible cable trough. I designed a simple temporary extension to my existing jog box to mount the speed controller and kill switch. Et voila!

500W48VSpindle

Wow… What an improvement!

Tons of power, <0.005m run-out and oh, did I mention… It’s quiet!

“Dimmer Not Dumber IV” – the fader continues

The “Dimmer Not Dumber” fader saga has not closed. In the spirit of invention being the mother of invention, introducing “Dimmer Not Dumber IV“, for a customer who wants to control slide dimmers.

Here the “Dimmer Not Dumber IV” is going through its “homing” sequence. The stutter near the top allows the dimmer to travel beyond the proximity detection to reach maximum brightness.   Once homed, the dimmers drop to the OFF “rest” state. The dimmers are programmed to move through a specific light sequence when triggered by the external control signals.

Dimmer Not Dumber IV: with pair of electrical light slide dimmers and control unit

Where the original Dimmer Not Dumber II” design used servo-motor to control a residential rotary dimmer, the new design (and its failed predecessor, “Dimmer Not Dumber III“) uses a stepper motor to control a slide dimmer.

Talk about a hammer to crack a nut. This design uses a NEMA17 stepper coupled to a 1/4” 20 screw upon which a slide assembly that captures a corresponding nut rides. The end-stop, necessary to establish a “home” position for the steppers, uses an inductive proximity detector that is activated by the presence of a machine screw embedded in the slide assembly.

Dimmer No Dumber IV: showing fader base, motor mount, proximity mount, and slide assembly.

The pieces are cut from 12mmm and 6mm HDPE and connected using M3 machine screws. The whole assembly screws to the slide dimmer using the normal fascia mount.

Dimmer No Dumber IV: closeup of the 2-part slider assembly that captures the nut that rides on the screw. The countersink-head machine screw on the left triggers the inductive proximity detector at a distance of ~ 5mm.

The control software consists of an Arduino Nano and a pair of DRV8825 stepper motor drivers. The electronics, steppers and proximity detectors are powered through a 12v connection, and 24v control signals are conditioned to lower voltages for the Nano. Screw terminals are used to make the electrical connections for power, control signals (reset and trigger) and each detector.  The entire electronics assembly is housed in a small enclosure created with from a 12mm HDPE base and 6mm HDPE top plate.

Neater, huh!

 

 

seXY – computer-controlled mechanism for a new clock

s e X Y

Computer-controlled mechanism for a new clock

seXY is a motorized mechanism that under computer control can move a carriage slide in two separate axes: up to 380mm (15″) in the X-axis (side to side) and 350mm (13.5″) in the Y-axis (front to back). A huge “design space” to play with! My intention is to mount a head to the slider equipped with a servo that engages either a pen or an eraser… More to come on that front!

In the following video, the left and right steppers are being controlled by the micro-controller which is just moving the slide to and fro the X and Y axis, and the four diagonals.

seXY: Stepper-driven X-Y mechanism

So, this weekend CNC project was largely inspired by an interesting product called AxiDraw,  that is described as “the personal writing and drawing machine that mixes the precision of robotics with the warmth of a hand-drawn note.”  I was primarily fascinated by the control belt arrangement that allowed the two steppers to be stationary. This avoids all the complications of creating wiring harnesses that have to flex with the machine movements.

It appeared from the video and other similar designs that the two steppers are fixed at either end of the x-axis and that axis movement is achieved by moving BOTH. This belt arrangement has an interesting effect. When both steppers turn in the same direction, the carriage slide moves along the x-axis. When the steppers move in opposite directions, the carriage slide moves along the y-axis. If either stepper is stopped, the carriage slide moves along a diagonal.

Neat, huh.

So I decided to design and build one.

Continue reading

Dimmer Not Dumber II: Servo-controlled light fader

Introducing the “Dimmer Not Dumber” II

A novel approach to fading line voltage lights!

This video shows me triggering the unit and then at the end, applying a reset signal. The unit is programmed to climb slowly to preset light levels upon repetitive triggering (10%, 20%, 30%, 40% and 100%). The reset signal applied at the end [44s] slowly fades down the light intensity to fully OFF.

A client wanted me to control the brightness of two sets of residential 110v pot lights. The only experience I have in controlling line-powered equipment is through using relays and opto-isolated solid state switches. However, these just provide simple ON/OFF control; and dimming lights is a whole different ball of wax! Plus, I did NOT want to mess with mains voltages!  There are devices on the market to do this but they are a) expensive, b) require electronics connected to the 110v load side and c) require real-time software to control (see discussion below). I wanted a simpler solution that used off-the-shelf residential electrical components, used simple electronics and gave me complete electrical isolation.

So, I came up with the “Dimmer Not Dumber” light fader design.

In this design, a servo motor is connected to the shaft of an unmodified residential light dimmer (Levitron, I believe) via a simple gear pair. This dimmer has a control shaft that rotates about 320 degrees to fade between full OFF to full ON. In addition, pushing the switch knob turns the whole unit ON and OFF.

As servo articulation is typically a maximum of 180 degrees, a 2:1 gear pair means that the full range of the servo translates into a complete rotation of the dimmer shaft. Control of the servo position therefore allows full control of the intensity of the light, so now all I have to do is connect the servo to a micro-controller and voila!  Full control of the light intensity and complete electrical isolation!

The Dimmer Not Dumber II version now includes an Arduino Nano, input conditioning for 5 – 24V triggers and a 5V buck converter. An 8-tooth gear attaches to the electrical fader’s control shaft and tightened with a small set screw, while the larger 16 tooth gear attaches to the servo using a plastic servo horn.  All electrical components are located within pockets in the base attachment plate while the upper plate holds the servo and has holes to access the pair of 3-pin servo connections and the 4-pin screw terminal block for external connections.

The body of the unit is made in two parts: a 12mm HDPE base attachment plate and a 6mm HDPE upper plate servo mount. The base and upper plates are attached using 3 3mm Allen-head bolts. The electrical fader mounts inside an electrical box as normal, and the Dimmer Not Dumber II unit bolts to the dimmer using the normal screw holes used for fascia plates.

Dimmer Not Dumber II: showing top face with the two servo pins and the external connection screw terminals.

Dimmer Not Dumber II: closeup of the two servo connector pins and the screw terminals for 9-12V, Ground, Trigger and Reset connections

“Dimmer Not Dumber” works like a charm, both in the light and the dark!

Continue reading

CYCLOPS: servo-controlled Mechanical Iris

It’s been a while since I’ve posted – I have been busy though – and even longer since I posted something not related to a clock!

So, behold… CYCLOPS – The Mechanical Iris!

The video above – taken from the front – shows the completed CYCLOPS Mechanical Iris opening and closing as the servo runs back and forth. The video below – shot from the back – shows the mechanical linkages between the outer gear ring and the “petals” of the iris, and how the assembly operates to open and close the iris.

 

The CYCLOPS Mechanical Iris is made up of a face plate and five pivoting “petals”, each linked to a large rotary gear ring. The petals are carefully shaped to allow them to open and close a central iris that is 200mm (8.6″) in diameter. A 5:1 gear connects the outer ring to a small metal-gear servo motor mounted to the face plate. As the videos show, as the servo rotates through 180 degrees, the petals move so that the iris fully opens and closes.

Mechanical Iris: with outer gear ring and linkages to each of the 5 petals

Mechanical Iris: showing 5 petals in open position

Mechanical Iris: showing 5 petals in closed position

Designed and built as a proof of concept, the CYCLOPS Mechanical Iris was made quickly to test geometries and mechanical operation. It was designed using SketchUp with CAM operations using SketchUCam, and cut on my CNC machine  The face plate is cut from 12mm baltic birch, while the petals, linkages, outer ring, servo mount and servo gear are cut from 6mm HDPE (High Density PolyEthylene).

The initial design was for a proof-of-concept mechanical door to a “locked” compartment. Upon receipt of a trigger signal, the iris was required to open to allow access to the compartment behind and whatever it contains. While the POC was very successful, a number of design changes will be made to improve performance and usability. In this design, I incorporated three different linkage points on each petal, each a different distance from the pivot point, to test different lengths and designs of linkage arms. Tests showed that only the outermost (furthest) connection point was necessary, so the others will be removed. A simple curved linkage allowed for some spring in the mechanism that helped to fully close the iris, and this design element shall remain. The teeth of the outer gear ring covered an arc of 90 degrees. This proved to be in excess of what was needed and a sweep of only 45 degrees will be used. Additionally, the face plate will be redesigned with a deeper pocket to accommodate the outer gear ring and servo gear. This will also allow for a simpler servo mount and gear ring restraint. Also, the new face plate will also have simpler attachment points to the hidden compartment to make it easier to install.

Neat huh?

Pop-UP Clock… now in colour!

The Pop-Up Clock described in a recent post “Pop-Up Clock and Flipper Clock – Magnetic Digit Elements” is a work-in-progress proof of concept as I develop a full 4-digit clock (complete with flashing colon).

So far, the design displays the time on this single digit display in a sequential manner: two digits for the hour, then a dash (“-“) followed by two digits for the minutes.

Wishing to increase the illumination of the display and the contrast of the segments between ON and OFF (or IN and OUT) states, I made some changes. I added a strip of addressable WS2812 LEDs around the periphery of the display and blacked-out the rear of each segment so that little light passes into the HDPE when it is extended (OUT).  When retracted (IN), light from the LEDs shines into the elements and illuminates them.  In the software I reversed the direction of the segments so that when it is ON, it is retracted (IN).  Here’s a video that shows the effect.

This test shows considerable light bleed from the LED strip, and this shall be rectified when there is a fully enclosed baffle between the front plate and servo mount plate… In addition, I shall also increase the contrast of the segments with a better light seal.

As with many of my clocks, the accurate time is obtained from an NTP request to the US National Institute of Science and Technology (NIST) atomic clock server, using an ESP8266 WeMost D1 Mini WiFi module.  WiFi channel access parameters, local time relative to GMT, daylight savings active, and duration between display updates (minutes) are entered on its web server and subsequently stored in EEPROM when the unit is powered on for the first time, or if it fails to connect to the local WiFi channel.

Oh yes, and just for Lise, the display its blue!